The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141303 Primes of the form 2*x^2+6*x*y-3*y^2 (as well as of the form 5*x^2+10*x*y+2*y^2). 10
 2, 5, 17, 53, 113, 137, 173, 197, 233, 257, 293, 317, 353, 557, 593, 617, 653, 677, 773, 797, 857, 953, 977, 1013, 1097, 1193, 1217, 1277, 1373, 1433, 1493, 1553, 1613, 1637, 1697, 1733, 1877, 1913, 1973, 1997, 2153, 2213, 2237, 2273, 2297, 2333, 2357, 2393, 2417, 2477 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Discriminant = 60. Class = 4. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1. This is also the list of primes p such that p = 2 or 5 or p is congruent to 17 or 53 mod 60. - Jean-François Alcover, Oct 28 2016 REFERENCES Z. I. Borevich and I. R. Shafarevich, Number Theory. LINKS Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000 N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014. D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981. EXAMPLE a(3)=17 because we can write 17=2*2^2+6*2*1-3*1^2 (or 17=5*1^2+10*1*1+2*1^2). MATHEMATICA Select[Prime[Range[500]], # == 2 || # == 5 || MatchQ[Mod[#, 60], 17|53]&] (* Jean-François Alcover, Oct 28 2016 *) CROSSREFS Cf. A107152, A141302, A141304 (d=60). Primes in A243189. Sequence in context: A216969 A148406 A148407 * A263678 A133510 A191640 Adjacent sequences: A141300 A141301 A141302 * A141304 A141305 A141306 KEYWORD nonn AUTHOR Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 18:16 EDT 2024. Contains 371916 sequences. (Running on oeis4.)