login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107167
Primes of the form 5x^2 + 12y^2.
3
5, 17, 53, 113, 137, 173, 197, 233, 257, 293, 317, 353, 557, 593, 617, 653, 677, 773, 797, 857, 953, 977, 1013, 1097, 1193, 1217, 1277, 1373, 1433, 1493, 1553, 1613, 1637, 1697, 1733, 1877, 1913, 1973, 1997, 2153, 2213, 2237, 2273, 2297, 2333
OFFSET
1,1
COMMENTS
Discriminant = -240. See A107132 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
Except for 5, the primes are congruent to {17, 53} (mod 60). - T. D. Noe, May 02 2008
MATHEMATICA
QuadPrimes2[5, 0, 12, 10000] (* see A106856 *)
PROG
(Magma) [5] cat [p: p in PrimesUpTo(3000) | p mod 60 in [17, 53]]; // Vincenzo Librandi, Jul 25 2012
(PARI) list(lim)=my(v=List([5]), t); forprime(p=17, lim, t=p%60; if(t==17||t==53, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Cf. A139827.
Sequence in context: A037544 A090575 A191139 * A201478 A176470 A240693
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved