login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A141302
Primes of the form -x^2+6*x*y+6*y^2 (as well as of the form 11*x^2+18*x*y+6*y^2).
12
11, 59, 71, 131, 179, 191, 239, 251, 311, 359, 419, 431, 479, 491, 599, 659, 719, 839, 911, 971, 1019, 1031, 1091, 1151, 1259, 1319, 1439, 1451, 1499, 1511, 1559, 1571, 1619, 1811, 1871, 1931, 1979, 2039, 2099, 2111, 2339, 2351, 2399, 2411, 2459, 2531, 2579, 2591, 2699, 2711
OFFSET
1,1
COMMENTS
Discriminant = 60. Class number = 4. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1 if they are primitive.
The Pell form X^2 - 15*Y^2 represents the negative primes -a(n), for n >= 1. - Wolfdieter Lang, Nov 28 2024
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
Primes congruent to {11, 59} (mod 60). -Wolfdieter Lang, Dec 22 2024
EXAMPLE
a(3)=71 because we can write 71=-1^2+6*1*3+6*3^2 (or 71=11*1^2+18*1*2+6*2^2).
MATHEMATICA
Reap[For[p = 2, p < 3000, p = NextPrime[p], If[FindInstance[p == -x^2 + 6*x*y + 6*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)
CROSSREFS
Cf. A107152, A141303, A141304 (d=60).
Primes in A237606.
Sequence in context: A356039 A073720 A257364 * A139872 A165977 A214151
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 24 2008
EXTENSIONS
Offset corrected by Mohammed Yaseen, May 20 2023
STATUS
approved