login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141302 Primes of the form -x^2+6*x*y+6*y^2 (as well as of the form 11*x^2+18*x*y+6*y^2). 10
11, 59, 71, 131, 179, 191, 239, 251, 311, 359, 419, 431, 479, 491, 599, 659, 719, 839, 911, 971, 1019, 1031, 1091, 1151, 1259, 1319, 1439, 1451, 1499, 1511, 1559, 1571, 1619, 1811, 1871, 1931, 1979, 2039, 2099, 2111, 2339, 2351, 2399, 2411, 2459, 2531, 2579, 2591, 2699, 2711 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Discriminant = 60. Class = 4. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1

REFERENCES

Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.

D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

LINKS

Table of n, a(n) for n=0..49.

N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)

EXAMPLE

a(3)=71 because we can write 71=-1^2+6*1*3+6*3^2 (or 71=11*1^2+18*1*2+6*2^2).

MATHEMATICA

Reap[For[p = 2, p < 3000, p = NextPrime[p], If[FindInstance[p == -x^2 + 6*x*y + 6*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)

CROSSREFS

Cf. A107152, A141303, A141304 (d=60).

Primes in A237606.

Sequence in context: A290360 A073720 A257364 * A139872 A165977 A214151

Adjacent sequences:  A141299 A141300 A141301 * A141303 A141304 A141305

KEYWORD

nonn

AUTHOR

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 24 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 07:12 EDT 2021. Contains 343146 sequences. (Running on oeis4.)