The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141304 Primes of the form -2*x^2+6*x*y+3*y^2 (as well as of the form 7*x^2+12*x*y+3*y^2). 10
 3, 7, 43, 67, 103, 127, 163, 223, 283, 307, 367, 463, 487, 523, 547, 607, 643, 727, 787, 823, 883, 907, 967, 1063, 1087, 1123, 1303, 1327, 1423, 1447, 1483, 1543, 1567, 1627, 1663, 1723, 1747, 1783, 1867, 1987, 2083, 2143, 2203, 2287, 2347, 2383, 2467, 2503, 2647, 2683 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Discriminant = 60. Class = 4. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1 This is also the list of primes p such that p = 3 or p is congruent to 7 or 43 mod 60. - Jean-François Alcover, Oct 28 2016 REFERENCES Z. I. Borevich and I. R. Shafarevich, Number Theory. D. B. Zagier, Zetafunktionen und quadratische Koerper. LINKS Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000 N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references) EXAMPLE a(3)=43 because we can write 43=-2*1^2+6*1*3+3*3^2 (or 43=7*1^2+12*1*2+3*2^2). MATHEMATICA Select[Prime[Range[500]], # == 3 || MatchQ[Mod[#, 60], 7|43]&] (* Jean-François Alcover, Oct 28 2016 *) CROSSREFS Cf. A107152, A141302, A141303 (d=60). Primes in A243190. Sequence in context: A106965 A337829 A257366 * A213893 A236476 A282178 Adjacent sequences:  A141301 A141302 A141303 * A141305 A141306 A141307 KEYWORD nonn AUTHOR Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 19:02 EDT 2021. Contains 347588 sequences. (Running on oeis4.)