login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141192
Primes of the form 3*x^2+3*x*y-4*y^2 (as well as of the form 8*x^2+11*x*y+2*y^2).
7
2, 3, 29, 41, 53, 59, 71, 89, 107, 113, 167, 173, 179, 227, 257, 269, 281, 293, 317, 383, 401, 431, 449, 509, 521, 563, 569, 599, 641, 659, 677, 683, 743, 773, 797, 827, 839, 857, 863, 887, 911, 941, 953, 971, 977, 983, 1019, 1091, 1097, 1181, 1193, 1229, 1283, 1307, 1319
OFFSET
1,1
COMMENTS
Discriminant = 57. Class = 2. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1
p = 3 and primes p = 2 mod 3 such that 57 is a square mod p. - Juan Arias-de-Reyna, Mar 20 2011
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
EXAMPLE
a(6)=59 because we can write 59=3*7^2+3*7*8-4*8^2 (or 59=8*1^2+11*1*3+2*3^2)
MATHEMATICA
Select[Prime[Range[250]], # == 3 || MatchQ[Mod[#, 57], Alternatives[2, 8, 14, 29, 32, 41, 50, 53, 56]]&] (* Jean-François Alcover, Oct 28 2016 *)
CROSSREFS
Cf. A141193 (d=57). A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Primes in A243192.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Sequence in context: A042335 A218995 A284649 * A215135 A059453 A235481
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008
STATUS
approved