The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141192 Primes of the form 3*x^2+3*x*y-4*y^2 (as well as of the form 8*x^2+11*x*y+2*y^2). 7
 2, 3, 29, 41, 53, 59, 71, 89, 107, 113, 167, 173, 179, 227, 257, 269, 281, 293, 317, 383, 401, 431, 449, 509, 521, 563, 569, 599, 641, 659, 677, 683, 743, 773, 797, 827, 839, 857, 863, 887, 911, 941, 953, 971, 977, 983, 1019, 1091, 1097, 1181, 1193, 1229, 1283, 1307, 1319 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Discriminant = 57. Class = 2. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1 p = 3 and primes p = 2 mod 3 such that 57 is a square mod p. - Juan Arias-de-Reyna, Mar 20 2011. REFERENCES Z. I. Borevich and I. R. Shafarevich, Number Theory. D. B. Zagier, Zetafunktionen und quadratische Körper. LINKS Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000 N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references) EXAMPLE a(6)=59 because we can write 59=3*7^2+3*7*8-4*8^2 (or 59=8*1^2+11*1*3+2*3^2) MATHEMATICA Select[Prime[Range[250]], # == 3 || MatchQ[Mod[#, 57], Alternatives[2, 8, 14, 29, 32, 41, 50, 53, 56]]&] (* Jean-François Alcover, Oct 28 2016 *) CROSSREFS Cf. A141193 (d=57). A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). Primes in A243192. For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link. Sequence in context: A042335 A218995 A284649 * A215135 A059453 A235481 Adjacent sequences:  A141189 A141190 A141191 * A141193 A141194 A141195 KEYWORD nonn AUTHOR Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 19:40 EST 2021. Contains 349526 sequences. (Running on oeis4.)