login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140122
Negative of numerator of Sum_{k=1..n} (-1)^k / semiprime(k).
2
1, 1, 7, 17, 209, 25, 37, 281, 9797, 92711, 120011, 1589737, 2027317, 30861373, 38322673, 735926129, 6107595203, 5188977503, 6040786643, 5218865543, 174771852097, 4738609625857, 5386574286277, 4776172794577, 197777244862999
OFFSET
1,3
EXAMPLE
The first 10 values of a(n)/A140123(n) = -1/4, -1/12, -7/36, -17/180, -209/1260, -25/252, -37/252, -281/2772, -9797/69300, -92711/900900. The 10th term of the sum is (-1/4)+(1/6)-(1/9)+(1/10)-(1/14)+(1/15)-(1/21)+(1/22)-(1/25)+(1/26) = -92711/900900 hence a(10) = -(-92711) = 92711. The 20th term of the alternating sum is (-1/4)+(1/6)-(1/9)+(1/10)-(1/14)+(1/15)-(1/21)+(1/22)-(1/25)+(1/26)-(1/33)+(1/34)-(1/35)+(1/38)-(1/39)+(1/46)-(1/49)+(1/51)-(1/55)+(1/57) = -5218865543/46849502700, hence a(20) = 5218865543.
MAPLE
A001358 := proc(n) local a; if n = 1 then 4; else for a from A001358(n-1)+1 do if numtheory[bigomega](a) = 2 then RETURN(a) ; fi ; od: fi ; end: A140122 := proc(n) local k ; numer(-add ( (-1)^k/A001358(k), k=1..n)) ; end: seq(A140122(n), n=1..30) ; # R. J. Mathar, May 13 2008
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Jonathan Vos Post, May 09 2008
EXTENSIONS
Corrected and extended by R. J. Mathar, May 13 2008
STATUS
approved