login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A367809
a(n) = Sum_{k=0..n} A011971(n, k) * (-2)^(n - k).
2
1, 0, 7, -17, 166, -931, 8333, -67902, 668341, -6733957, 74909152, -875130273, 10931723505, -143624036492, 1989841289619, -28881136161245, 438657928012966, -6948176832355895, 114571387874994353, -1962292996833874918, 34849770255925089153, -640681440719312240225, 12174584322610783966760
OFFSET
0,3
COMMENTS
The Peirce/Aitken polynomials evaluated at -1/2 and the result normalized with (-2)^n.
PROG
(Python) # Using the function b from A367808.
def a(n): return sum(b(n)[k] * (-2) ** (n - k) for k in range(n + 1))
print([a(n) for n in range(23)])
CROSSREFS
Sequence in context: A375426 A214149 A147643 * A061159 A178694 A140122
KEYWORD
sign
AUTHOR
Peter Luschny, Dec 01 2023
STATUS
approved