login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139886
Primes of the form 10x^2 + 19y^2.
2
19, 29, 59, 109, 179, 181, 211, 269, 331, 379, 421, 509, 659, 661, 811, 829, 941, 971, 1019, 1021, 1091, 1171, 1181, 1229, 1291, 1381, 1459, 1549, 1571, 1579, 1699, 1709, 1741, 1789, 1861, 1931, 1979, 2029, 2131, 2141, 2179, 2269, 2309, 2339
OFFSET
1,1
COMMENTS
Discriminant = -760. See A139827 for more information.
10*x^2 + 19 produces 19 consecutive primes belonging to A028416 for x from 0 to 18. - Davide Rotondo, Jun 13 2022
Primes p such that Kronecker(2,p) <= 0, Kronecker(5,p) >= 0 and Kronecker(-19,p) <= 0. - Jianing Song, Jun 13 2022
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {19, 21, 29, 51, 59, 69, 91, 109, 141, 179, 181, 189, 211, 219, 221, 259, 261, 269, 299, 331, 341, 371, 379, 411, 421, 451, 459, 469, 509, 531, 611, 621, 629, 659, 661, 699, 749} (mod 760). [For the other direction, primes satisfying this congruence are terms of this sequence since 760 is a term in A003171. - Jianing Song, Jun 13 2022]
MATHEMATICA
QuadPrimes2[10, 0, 19, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(3000) | p mod 760 in {19, 21, 29, 51, 59, 69, 91, 109, 141, 179, 181, 189, 211, 219, 221, 259, 261, 269, 299, 331, 341, 371, 379, 411, 421, 451, 459, 469, 509, 531, 611, 621, 629, 659, 661, 699, 749}]; // Vincenzo Librandi, Jul 30 2012
CROSSREFS
Apart from 19, intersection of A003629, A045468 and A191063.
Sequence in context: A136071 A088998 A181606 * A089724 A265804 A276732
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved