login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139852
Primes of the form 7x^2 + 16y^2.
1
7, 23, 71, 79, 127, 151, 191, 239, 263, 359, 431, 463, 487, 599, 631, 743, 751, 823, 863, 911, 919, 967, 991, 1031, 1087, 1103, 1303, 1327, 1367, 1423, 1439, 1471, 1583, 1607, 1663, 1759, 1831, 1871, 1999, 2039, 2087, 2111, 2143, 2207, 2311
OFFSET
1,1
COMMENTS
Discriminant=-448. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
Except for 7, the primes are congruent to {15, 23, 39} (mod 56).
MATHEMATICA
QuadPrimes2[7, 0, 16, 10000] (* see A106856 *)
PROG
(Magma) [7] cat [ p: p in PrimesUpTo(3000) | p mod 56 in {15, 23, 39}]; // Vincenzo Librandi, Jul 29 2012
(PARI) list(lim)=my(v=List(), w, t); for(x=1, sqrtint(lim\7), w=7*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 22 2017
CROSSREFS
Sequence in context: A048458 A134350 A005342 * A141194 A198644 A045535
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved