login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138967
Infinite Fibonacci word on the alphabet {1,2,3,4}.
2
1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3
OFFSET
1,2
COMMENTS
Start with the infinite Fibonacci word A003849, which is 0100101001001010010... and replace each 0 by 1,2,3 and each 1 by 1,4.
(a(n)) is the unique fixed point of the morphism 1->12, 2->3, 3->14, 4->3, obtained by coding the overlapping 3-block morphism of the Fibonacci morphism according to 010<->1, 100<->2, 001<->3, 101<->4. - Michel Dekking, Sep 28 2017
LINKS
F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
FORMULA
a(n) = 3 for n = 3, 8, 21, 55, ..., F(2*k), where k>1.
a(n) = 4 for n = 5, 13, 34, 89, ..., F(2*k+1), where k>1.
Let A(n)=floor(n*tau), B(n)=n+floor(n*tau); i.e., A and B are the lower and upper Wythoff sequences, A=A000201, B=A001950. a(n)=1 if n=A(A(k)) for some k; a(n)=2 if n=B(A(k)) for some k; a(n)=3 if n=A(B(k)) for some k; a(n)=4 if n=B(B(k)) for some k.
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 04 2008
STATUS
approved