login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138967 Infinite Fibonacci word on the alphabet {1,2,3,4}. 2
1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Start with the infinite Fibonacci word A003849, which is 0100101001001010010... and replace each 0 by 1,2,3 and each 1 by 1,4.

(a(n)) is the unique fixed point of the morphism 1->12, 2->3, 3->14, 4->3, obtained by coding the overlapping 3-block morphism of the Fibonacci morphism according to 010<->1, 100<->2, 001<->3, 101<->4. - Michel Dekking, Sep 28 2017

LINKS

Table of n, a(n) for n=1..105.

F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.

FORMULA

a(n) = 3 for n = 3, 8, 21, 55, ..., F(2*k), where k>1.

a(n) = 4 for n = 5, 13, 34, 89, ..., F(2*k+1), where k>1.

Let A(n)=floor(n*tau), B(n)=n+floor(n*tau); i.e., A and B are the lower and upper Wythoff sequences, A=A000201, B=A001950. a(n)=1 if n=A(A(k)) for some k; a(n)=2 if n=B(A(k)) for some k; a(n)=3 if n=A(B(k)) for some k; a(n)=4 if n=B(B(k)) for some k.

CROSSREFS

Cf. A000201, A001950, A003849, A101864, A270788, A276757.

Sequence in context: A097744 A055445 A135560 * A274913 A265105 A035612

Adjacent sequences:  A138964 A138965 A138966 * A138968 A138969 A138970

KEYWORD

nonn

AUTHOR

Clark Kimberling, Apr 04 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 02:06 EST 2018. Contains 299330 sequences. (Running on oeis4.)