login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138703
a(n) is the sum of the terms in the continued fraction of the absolute value of B_n, the n-th Bernoulli number.
4
1, 2, 6, 0, 30, 0, 42, 0, 30, 0, 18, 0, 37, 0, 7, 0, 28, 0, 96, 0, 559, 0, 6210, 0, 86617, 0, 1425523, 0, 27298263, 0, 601580913, 0, 15116315788, 0, 429614643067, 0, 13711655205344, 0, 488332318973599, 0, 19296579341940107, 0, 841693047573684421, 0, 40338071854059455479
OFFSET
0,2
COMMENTS
For all odd n >=3, a(n) = 0.
LINKS
EXAMPLE
The 12th Bernoulli number is -691/2730. Now 691/2730 = the continued fraction 0 + 1/(3 + 1/(1 + 1/(19 + 1/(3 + 1/11)))). So a(12) = 0 + 3 + 1 + 19 + 3 + 11 = 37.
MAPLE
A138701row := proc(n) local B; B := abs(bernoulli(n)) ; numtheory[cfrac](B, 20, 'quotients') ; end: A138703 := proc(n) add(c, c=A138701row(n)) ; end: seq(op(A138703(n)), n=0..80) ; # R. J. Mathar, Jul 20 2009
MATHEMATICA
Table[ ContinuedFraction[ BernoulliB[n] // Abs] // Total, {n, 0, 50}] (* Jean-François Alcover, Mar 27 2013 *)
PROG
(PARI) a(n) = vecsum(contfrac(abs(bernfrac(n)))); \\ Jinyuan Wang, Aug 07 2021
(Python)
from sympy import continued_fraction, bernoulli
def A138703(n): return sum(continued_fraction(abs(bernoulli(n)))) # Chai Wah Wu, Apr 14 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Mar 26 2008
EXTENSIONS
Extended beyond a(15) by R. J. Mathar, Jul 20 2009
More terms from Jean-François Alcover, Mar 27 2013
STATUS
approved