login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138706
a(n) is the sum of the terms in the continued fraction expansion of the absolute value of B_{2n}, the (2n)-th Bernoulli number.
4
1, 6, 30, 42, 30, 18, 37, 7, 28, 96, 559, 6210, 86617, 1425523, 27298263, 601580913, 15116315788, 429614643067, 13711655205344, 488332318973599, 19296579341940107, 841693047573684421, 40338071854059455479, 2115074863808199160579, 120866265222965259346062
OFFSET
0,2
FORMULA
a(n) = A138703(2*n). - R. J. Mathar, Jul 20 2009
EXAMPLE
The 12th Bernoulli number is -691/2730. Now 691/2730 has the continued fraction 0 + 1/(3 + 1/(1 + 1/(19 + 1/(3 + 1/11)))). So a(6) = 0 + 3 + 1 + 19 + 3 + 11 = 37.
MAPLE
A138704row := proc(n) local B; B := abs(bernoulli(2*n)) ; numtheory[cfrac](B, 20, 'quotients') ; end: A138706 := proc(n) add(c, c=A138704row(n)) ; end: seq(op(A138706(n)), n=0..30) ; # R. J. Mathar, Jul 20 2009
MATHEMATICA
Table[Total[ContinuedFraction[Abs[BernoulliB[2n]]]], {n, 0, 25}] (* Harvey P. Dale, Feb 23 2012 *)
PROG
(PARI) a(n) = vecsum(contfrac(abs(bernfrac(2*n)))); \\ Jinyuan Wang, Aug 07 2021
(Python)
from sympy import continued_fraction, bernoulli
def A138706(n): return sum(continued_fraction(abs(bernoulli(n<<1)))) # Chai Wah Wu, Apr 14 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Mar 26 2008
EXTENSIONS
a(7)-a(22) from R. J. Mathar, Jul 20 2009
More terms from Jinyuan Wang, Aug 07 2021
STATUS
approved