login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138290
Numbers m such that 2^(m+1) - 2^k - 1 is composite for all 0 <= k < m.
6
6, 14, 22, 26, 30, 36, 38, 42, 54, 57, 62, 70, 78, 81, 90, 94, 110, 122, 126, 132, 134, 138, 142, 147, 150, 158, 166, 168, 171, 172, 174, 178, 182, 190, 194, 198, 206, 210, 222, 238, 254, 285, 294, 312, 315, 318, 334, 336, 350, 366, 372, 382, 405, 414, 416, 432
OFFSET
1,1
COMMENTS
The binary representation of 2^(m+1) - 2^k - 1 has m 1-bits and one 0-bit. Note that prime m are very rare: 577 is the first and 5569 is the second.
A208083(a(n)+1) = 0 (cf. A081118). - Reinhard Zumkeller, Feb 23 2012 [Corrected by Thomas Ordowski, Feb 19 2024]
Conjecture: 2^j - 2 are terms for j > 2. - Chai Wah Wu, Sep 07 2021
The proof of this conjecture is in A369375. - Thomas Ordowski, Mar 20 2024
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..996 (terms 1..275 from T. D. Noe)
FORMULA
For these m, A095058(m) = 0 and A110700(m) > 1.
For n > 0, a(n) = A369375(n+1) - 1. - Thomas Ordowski, Mar 20 2024
EXAMPLE
6 is here because 95, 111, 119, 123, 125 and 126 are all composite.
MATHEMATICA
t={}; Do[num=2^(n+1)-1; k=0; While[k<n && !PrimeQ[num-2^k], k++ ]; If[k==n, AppendTo[t, n]], {n, 100}]; t
Select[Range[500], AllTrue[2^(#+1)-1-2^Range[0, #-1], CompositeQ]&] (* Harvey P. Dale, Apr 09 2022 *)
PROG
(Haskell)
import Data.List (elemIndices)
a138290 n = a138290_list !! (n-1)
a138290_list = map (+ 1) $ tail $ elemIndices 0 a208083_list
-- Reinhard Zumkeller, Feb 23 2012
(Python)
from sympy import isprime
A138290_list = []
for n in range(1, 10**3):
k2, n2 = 1, 2**(n+1)
for k in range(n):
if isprime(n2-k2-1):
break
k2 *= 2
else:
A138290_list.append(n) # Chai Wah Wu, Sep 07 2021
(PARI) isok(m) = my(nb=0); for (k=0, m-1, if (!ispseudoprime(2^(m+1) - 2^k - 1), nb++, break)); nb==m; \\ Michel Marcus, Sep 13 2021
CROSSREFS
Many common terms with A092112.
Sequence in context: A182081 A125086 A195063 * A023057 A197127 A197171
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 13 2008
STATUS
approved