login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138289
Row sums of A138060.
2
1, 3, 6, 10, 11, 14, 20, 30, 41, 55, 75, 105, 146, 201, 276, 381, 527, 728, 1004, 1385, 1912, 2640, 3644, 5029, 6941, 9581, 13225, 18254, 25195, 34776, 48001, 66255, 91450, 126226, 174227, 240482, 331932, 458158, 632385, 872867, 1204799, 1662957, 2295342, 3168209, 4373008, 6035965, 8331307, 11499516
OFFSET
1,2
FORMULA
Conjecture: a(n) = a(n-1) + a(n-4) with g.f. x*(-1 - 2*x - 3*x^2 - 4*x^3) / (-1 + x + x^4). - R. J. Mathar, Jul 08 2011
From Charlie Neder, Jun 22 2018: (Start)
The conjectured recurrence is true. Proof:
Denote by W(n) the word formed from the n-th row of A138060 and by M^k() the morphism sending W(n) to W(n+1) applied k times. We have W(5) = W(4) + W(1), so for any k >= 0, W(k+5) = M^k(W(5)) = M^k(W(4) + W(1)) = M^k(W(4)) + M^k(W(1)) = W(k+4) + W(k+1).
Setting n=k+5 completes the proof. (End)
MAPLE
A138060 := proc() option remember; if n = 1 then return [1] ; else L := procname(n-1) ; a := [] ; for i from 1 to nops(L) do if op(i, L) = 1 then a := [op(a), 1, 2] ; elif op(i, L) <=3 then a := [op(a), op(i, L)+1] ; else a := [op(a), 1] ; end if; end do: end if; a ; end proc:
A138289 := proc(n) add(k, k=A138060(n)) ; end proc: # R. J. Mathar, Jul 08 2011
MATHEMATICA
LinearRecurrence[{1, 0, 0, 1}, {1, 3, 6, 10}, 35] (* Jean-François Alcover, Jul 01 2023 *)
CROSSREFS
Sequence in context: A231668 A123053 A221129 * A219638 A105359 A105355
KEYWORD
nonn
AUTHOR
Roger L. Bagula, May 02 2008
STATUS
approved