login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that 2^(m+1) - 2^k - 1 is composite for all 0 <= k < m.
6

%I #47 Mar 23 2024 20:01:39

%S 6,14,22,26,30,36,38,42,54,57,62,70,78,81,90,94,110,122,126,132,134,

%T 138,142,147,150,158,166,168,171,172,174,178,182,190,194,198,206,210,

%U 222,238,254,285,294,312,315,318,334,336,350,366,372,382,405,414,416,432

%N Numbers m such that 2^(m+1) - 2^k - 1 is composite for all 0 <= k < m.

%C The binary representation of 2^(m+1) - 2^k - 1 has m 1-bits and one 0-bit. Note that prime m are very rare: 577 is the first and 5569 is the second.

%C A208083(a(n)+1) = 0 (cf. A081118). - _Reinhard Zumkeller_, Feb 23 2012 [Corrected by _Thomas Ordowski_, Feb 19 2024]

%C Conjecture: 2^j - 2 are terms for j > 2. - _Chai Wah Wu_, Sep 07 2021

%C The proof of this conjecture is in A369375. - _Thomas Ordowski_, Mar 20 2024

%H Chai Wah Wu, <a href="/A138290/b138290.txt">Table of n, a(n) for n = 1..996</a> (terms 1..275 from T. D. Noe)

%F For these m, A095058(m) = 0 and A110700(m) > 1.

%F For n > 0, a(n) = A369375(n+1) - 1. - _Thomas Ordowski_, Mar 20 2024

%e 6 is here because 95, 111, 119, 123, 125 and 126 are all composite.

%t t={}; Do[num=2^(n+1)-1; k=0; While[k<n && !PrimeQ[num-2^k], k++ ]; If[k==n, AppendTo[t,n]], {n,100}]; t

%t Select[Range[500],AllTrue[2^(#+1)-1-2^Range[0,#-1],CompositeQ]&] (* _Harvey P. Dale_, Apr 09 2022 *)

%o (Haskell)

%o import Data.List (elemIndices)

%o a138290 n = a138290_list !! (n-1)

%o a138290_list = map (+ 1) $ tail $ elemIndices 0 a208083_list

%o -- _Reinhard Zumkeller_, Feb 23 2012

%o (Python)

%o from sympy import isprime

%o A138290_list = []

%o for n in range(1,10**3):

%o k2, n2 = 1, 2**(n+1)

%o for k in range(n):

%o if isprime(n2-k2-1):

%o break

%o k2 *= 2

%o else:

%o A138290_list.append(n) # _Chai Wah Wu_, Sep 07 2021

%o (PARI) isok(m) = my(nb=0); for (k=0, m-1, if (!ispseudoprime(2^(m+1) - 2^k - 1), nb++, break)); nb==m; \\ _Michel Marcus_, Sep 13 2021

%Y Many common terms with A092112.

%Y Cf. A081118, A095058, A110700, A208083, A369375.

%K nonn

%O 1,1

%A _T. D. Noe_, Mar 13 2008