This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138253 Beatty discrepancy of the complementary equation b(n) = a(a(n)) + n. 4
 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 2, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Suppose that (a(n)) and (b(n)) are complementary sequences that satisfy a complementary equation b(n) = f(a(n), n) and that the limits r = lim_{n->inf} a(n)/n and s = lim_{n->inf} b(n)/n exist and are both in the open interval (0,1). Let c(n) = floor(a(n)) and d(n) = floor(b(n)), so that (c(n)) and d(n)) are a pair of Beatty sequences. Define e(n) = d(n) - f(c(n), n). The sequence (e(n)) is here introduced as the Beatty discrepancy of the complementary equation b(n) = f(a(n), n). In the case at hand, (e(n)) measures the closeness of the pair (A136495, A136496) to the Beatty pair (A138251, A138252). LINKS FORMULA A138253(n) = d(n) - c(c(n)) - n, where c(n) = A138251(n), d(n) = A138252(n). EXAMPLE d(1) - c(c(1)) - 1 =  3 - 1 - 1 = 1; d(2) - c(c(2)) - 2 =  6 - 2 - 2 = 2; d(3) - c(c(3)) - 3 =  9 - 5 - 3 = 1; d(4) - c(c(4)) - 4 = 12 - 7 - 4 = 1. CROSSREFS Cf. A136495, A136496, A138251, A138252. Sequence in context: A274372 A037800 A144411 * A261447 A287325 A286133 Adjacent sequences:  A138250 A138251 A138252 * A138254 A138255 A138256 KEYWORD nonn AUTHOR Clark Kimberling, Mar 09 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 06:29 EDT 2018. Contains 301100 sequences. (Running on oeis4.)