OFFSET
0,8
COMMENTS
A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.
LINKS
Alois P. Heinz, Rows n = 0..40, flattened
FORMULA
EXAMPLE
T(3,3) = 1: /\/\/\
.
/\ /\
T(3,5) = 2: /\/ \ , / \/\
.
/\
\ \
T(3,6) = 1: / \
.
/\/\
T(3,7) = 1: / \
.
/\
/ \
T(3,9) = 1: / \
.
Triangle T(n,k) begins:
n\k: 0 1 2 3 4 5 6 7 8 9 . . . . . .16 . . . . . . . .25
---+----------------------------------------------------
00 : 1
01 : 1
02 : 1 0 1
03 : 1 0 2 1 1 0 1
04 : 1 0 3 2 3 1 3 2 2 1 1 0 1
05 : 1 0 4 3 7 4 7 5 8 6 6 3 5 4 3 2 2 1 1 0 1
MAPLE
b:= proc(x, y, t, n) option remember; expand(`if`(y>n, 0,
`if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)*z^
(2*y+1)+`if`(t<>1 and x>0, b(x-1, y+1, 2, n-1), 0)+
`if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=n..n^2))(b(0$3, 2*n)):
seq(T(n), n=0..8);
MATHEMATICA
b[x_, y_, t_, n_] := b[x, y, t, n] = Expand[If[y>n, 0, If[n == y, If[t == 2, 0, 1], b[x+1, y+1, 0, n-1]*z^(2*y+1) + If[t != 1 && x>0, b[x-1, y+1, 2, n-1], 0] + If[t != 2 && y>0, b[x+1, y-1, 1, n-1], 0]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, n, n^2}]][b[0, 0, 0, 2*n]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 25 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jun 19 2016
STATUS
approved