

A136496


Solution of the complementary equation b(n)=a(a(n))+n; this is sequence b; sequence a is A136495.


2



2, 6, 8, 11, 15, 19, 21, 25, 27, 30, 34, 36, 39, 43, 47, 49, 52, 56, 60, 62, 66, 68, 71, 75, 79, 81, 85, 87, 90, 94, 96, 99, 103, 107, 109, 113, 115, 118, 122, 124, 127, 131, 135, 137, 140, 144, 148, 150, 154, 156, 159, 163, 165, 168, 172, 176, 178, 181, 185, 189
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

b = 1 + (column 1 of Z) = 1 + A020942. The pair (a,b) also satisfy the following complementary equations: b(n)=a(a(a(n)))+1; a(b(n))=a(n)+b(n); b(a(n))=a(n)+b(n)1; (and others).


REFERENCES

Clark Kimberling and Peter Moses, Complementary equations and Zeckendorf arrays, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Thirteenth International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 201 (2010) 161178.


LINKS

Table of n, a(n) for n=1..60.


FORMULA

Let Z = (3rd order Zeckendorff array) = A136189. Then a = ordered union of columns 1,3,4,6,7,9,10,12,13,... of Z, b = ordered union of columns 2,5,8,11,14,... of Z.


EXAMPLE

b(1) = a(a(1))+1 = a(1)+1 = 1+1 = 2;
b(2) = a(a(2))+2 = a(3)+2 = 4+2 = 6;
b(3) = a(a(3))+3 = a(4)+3 = 5+3 = 8;
b(4) = a(a(4))+4 = a(5)+4 = 7+4 = 11.


CROSSREFS

Cf. A020942, A035513, A136189, A136495.
Sequence in context: A189666 A079418 A184420 * A183173 A178931 A076991
Adjacent sequences: A136493 A136494 A136495 * A136497 A136498 A136499


KEYWORD

nonn


AUTHOR

Clark Kimberling, Jan 01 2008


STATUS

approved



