login
A137740
Number of different strings of length n+5 obtained from "123...n" by iteratively duplicating any substring.
12
1, 32, 138, 348, 700, 1246, 2050, 3188, 4749, 6836, 9567, 13076, 17514, 23050, 29872, 38188, 48227, 60240, 74501, 91308, 110984, 133878, 160366, 190852, 225769, 265580, 310779, 361892, 419478, 484130, 556476, 637180, 726943, 826504, 936641, 1058172, 1191956
OFFSET
1,2
COMMENTS
See A137743 for comments and examples.
FORMULA
a(n) = (n+4)(n^2+3n-8)(n^2+23n+150)/5!+4 for n>4.
G.f.: x*(x^8+2*x^7-7*x^6-20*x^5+57*x^4-20*x^3-39*x^2+26*x+1) / (x-1)^6. - Colin Barker, Nov 04 2013
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 32, 138, 348, 700, 1246, 2050, 3188, 4749}, 40] (* Harvey P. Dale, Oct 18 2020 *)
PROG
(PARI) A137740(n)=if(n<2, 1, n=A135473(n+5, n); n[ #n]) /* function A135473 defined in A137743 */
(PARI) A137740(n)=if(n>4, n*(n*(n*(n*(n+30)+315)+1110)-136)/5!-36, [1, 32, 138, 348][n])
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Feb 10 2008
EXTENSIONS
More terms from Colin Barker, Nov 04 2013
STATUS
approved