OFFSET
0,4
COMMENTS
Among n persons we have (n^2-n)/2 undirected relations. We can set partition these relations into (up to) A137736(n)=Bell((n^2-n)/2) sets.
The number of graphs on n labeled nodes is A006125(n)=sum(binomial((n^2-n)/2,k),k=0..(n^2-n)/2).
FORMULA
a(n) = Bell(n*(n-1)/2) = A000110(n*(n-1)/2).
a(n) = Sum_{k=0..(n^2-n)/2} Stirling2((n^2-n)/2,k).
EXAMPLE
a(4) = Bell(6) = 203.
MAPLE
seq(combinat[bell](n*(n-1)/2), n=0..12);
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Wieder, Feb 09 2008
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jul 24 2024
STATUS
approved