login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135085
a(n) = A000110(2^n).
4
1, 2, 15, 4140, 10480142147, 128064670049908713818925644, 172134143357358850934369963665272571125557575184049758045339873395
OFFSET
0,2
COMMENTS
Number of set partitions of all subsets of a set, Bell(2^n).
FORMULA
a(n) = |W| = Sum_{k=0..2^n} Stirling2(2^n,k) = Bell(2^n), where Stirling2(n) is the Stirling number of the second kind and Bell(n) is the Bell number.
a(n) = exp(-1) * Sum_{k>=0} k^(2^n)/k!. - Ilya Gutkovskiy, Jun 13 2019
EXAMPLE
Let S={1,2,3,...,n} be a set of n elements and let SU be the set of all subsets of S including the empty set. The number of elements of SU is |SU| = 2^n. Now form all possible set partitions from SU including the empty set. This gives a set W and its number of elements is |W| = sum((stirling2(2^n,k)), k=0..2^n) = Bell(2^n).
For S={1,2} we have SU = { {}, {1}, {2}, {1,2} } and W =
{
{{{}}, {1}, {2}, {1, 2}},
{{2}, {1, 2}, {{}, {1}}},
{{1}, {1, 2}, {{}, {2}}},
{{1}, {2}, {{}, {1, 2}}},
{{{}}, {1, 2}, {{1}, {2}}},
{{{1}, {2}}, {{}, {1, 2}}},
{{1, 2}, {{}, {1}, {2}}},
{{{}}, {2}, {{1}, {1, 2}}},
{{{1}, {1, 2}}, {{}, {2}}},
{{2}, {{}, {1}, {1, 2}}},
{{{}}, {1}, {{2}, {1, 2}}},
{{{2}, {1, 2}}, {{}, {1}}},
{{1}, {{}, {2}, {1, 2}}},
{{{}}, {{1}, {2}, {1, 2}}},
{{{}, {1}, {2}, {1, 2}}}
}
and |W| = 15.
MAPLE
ZahlDerMengenAusMengeDerZerlegungenEinerMenge:=proc() local n, nend, arg, k, w; nend:=5; for n from 0 to nend do arg:=2^n; w[n]:=sum((stirling2(arg, k)), k=0..arg); od; print(w[0], w[1], w[2], w[3], w[4], w[5], w[6], w[7], w[8], w[9], w[10]); end proc;
MATHEMATICA
Table[BellB[2^n], {n, 0, 10}] (* Geoffrey Critzer, Jan 03 2014 *)
PROG
(Python)
from sympy import bell
def A135085(n): return bell(2**n) # Chai Wah Wu, Jun 22 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Wieder, Nov 18 2007, Nov 19 2007
STATUS
approved