login
A137693
Numbers n such that 3n^2-n = 6k^2-2k for some integer k>0.
2
7, 7887, 9101399, 10503006367, 12120460245927, 13987000620793199, 16140986595935105527, 18626684544708490984767, 21495177823607002661315399, 24805416581757936362666985487, 28625429240170834955515039936407, 33033720537740561780727993419627999
OFFSET
1,1
COMMENTS
Also indices of pentagonal numbers which are twice some other pentagonal number.
Note that A000326(n) = 2 A000326(k) <=> n(3n-1)=2k(3k-1), which is easily solved by standard Pell-type techniques (cf. link to D. Alpern's quadratic solver). Here we consider only positive solutions.
Inspired by a recent comment on A000326 by R. J. Mathar.
FORMULA
a(n) = f^{2n-2}(5,7)[2], where f(x,y) = (577x + 408y - 164, 816x + 577y - 232)
a(n) = (7,7,9,7,7,9,...) mod 10
G.f. x*(-7+198*x+x^2) / ( (x-1)*(x^2-1154*x+1) ). - R. J. Mathar, Apr 17 2011
a(0)=0, a(1)=7, a(2)=7887, a(3)=9101399, a(n)=1155*a(n-1)-1155*a(n-2)+ a(n-3). - Harvey P. Dale, Jun 21 2011
MATHEMATICA
CoefficientList[Series[x (-7+198x+x^2)/((x-1)(x^2-1154x+1)), {x, 0, 20}], x] (* or *) Join[{0}, LinearRecurrence[{1155, -1155, 1}, {7, 7887, 9101399}, 20]] (* Harvey P. Dale, Jun 21 2011 *)
PROG
(PARI) vector(20, i, (v=if(i>1, [577, 408; 816, 577]*v-[164; 232], [5; 7]))[2, 1])
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Feb 08 2008
EXTENSIONS
More terms from Harvey P. Dale, Jun 21 2011
STATUS
approved