login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137693
Numbers n such that 3n^2-n = 6k^2-2k for some integer k>0.
2
7, 7887, 9101399, 10503006367, 12120460245927, 13987000620793199, 16140986595935105527, 18626684544708490984767, 21495177823607002661315399, 24805416581757936362666985487, 28625429240170834955515039936407, 33033720537740561780727993419627999
OFFSET
1,1
COMMENTS
Also indices of pentagonal numbers which are twice some other pentagonal number.
Note that A000326(n) = 2 A000326(k) <=> n(3n-1)=2k(3k-1), which is easily solved by standard Pell-type techniques (cf. link to D. Alpern's quadratic solver). Here we consider only positive solutions.
Inspired by a recent comment on A000326 by R. J. Mathar.
FORMULA
a(n) = f^{2n-2}(5,7)[2], where f(x,y) = (577x + 408y - 164, 816x + 577y - 232)
a(n) = (7,7,9,7,7,9,...) mod 10
G.f. x*(-7+198*x+x^2) / ( (x-1)*(x^2-1154*x+1) ). - R. J. Mathar, Apr 17 2011
a(0)=0, a(1)=7, a(2)=7887, a(3)=9101399, a(n)=1155*a(n-1)-1155*a(n-2)+ a(n-3). - Harvey P. Dale, Jun 21 2011
MATHEMATICA
CoefficientList[Series[x (-7+198x+x^2)/((x-1)(x^2-1154x+1)), {x, 0, 20}], x] (* or *) Join[{0}, LinearRecurrence[{1155, -1155, 1}, {7, 7887, 9101399}, 20]] (* Harvey P. Dale, Jun 21 2011 *)
PROG
(PARI) vector(20, i, (v=if(i>1, [577, 408; 816, 577]*v-[164; 232], [5; 7]))[2, 1])
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Feb 08 2008
EXTENSIONS
More terms from Harvey P. Dale, Jun 21 2011
STATUS
approved