login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137696
Triangular sequence of coefficients from a polynomial recursion: p(x,n)=p(x,Floor[(n-1)/2])-x^2*p(x,n-3)+x.
0
1, 0, 1, 0, 1, 1, 0, 2, -1, 0, 2, 0, -1, 0, 2, 1, -1, -1, 0, 2, 1, -2, 1, 0, 3, -1, -2, 0, 1, 0, 3, -1, -2, -1, 1, 1, 0, 3, 0, -3, -1, 2, -1, 0, 3, 0, -4, 1, 2, 0, -1
OFFSET
1,8
COMMENTS
Row sums are: {1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, ...}
FORMULA
p(x,n)=p(x,Floor[(n-1)/2])-x^2*p(x,n-3)+x; out_n,m=Coefficient(p(x,n)).
EXAMPLE
{1},
{0, 1},
{0, 1, 1},
{0, 2, -1},
{0, 2, 0, -1},
{0, 2, 1, -1, -1},
{0, 2, 1, -2, 1},
{0, 3, -1, -2, 0, 1},
{0, 3, -1, -2, -1,1, 1},
{0, 3, 0, -3, -1, 2, -1},
{0, 3, 0, -4, 1, 2, 0, -1}
MATHEMATICA
Clear[p, x]; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = x; p[x, 2] = x^2 + x; p[x_, n_] := p[x, n] = p[x, Floor[(n - 1)/2]] - x^2*p[x, n - 3] + x; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}];
CROSSREFS
Sequence in context: A373147 A374206 A366768 * A275731 A143614 A071412
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula, Apr 27 2008
STATUS
approved