|
|
A136118
|
|
Least index m>0 such that A136117(n)-A000326(m) is again a pentagonal number.
|
|
11
|
|
|
5, 4, 7, 12, 19, 17, 25, 20, 10, 28, 45, 42, 39, 17, 37, 21, 36, 35, 13, 33, 65, 28, 67, 32, 52, 40, 74, 31, 70, 85, 35, 16, 60, 70, 77, 68, 42, 30, 105, 76, 59, 26, 74, 49, 115, 19, 125, 115, 102, 110, 92, 56, 103, 29, 145, 100, 114, 77, 92, 47, 63, 108, 152, 95, 22, 116
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..66.
|
|
EXAMPLE
|
a(1)=5 is the least integer m>0 such that A136117(1)-P(m) is a pentagonal number, namely P(7)-P(5)=70-35=35=P(5).
a(2)=4 is the least integer m>0 such that A136117(2)-P(m) is a pentagonal number, namely P(8)-P(4)=92-22=70=P(7).
|
|
PROG
|
(PARI) A136118vect(n, i=-1)=vector(n, k, until(0, for(j=2, #n=sum2sqr((i+=6)^2+1), n[j]%6==[5, 5]||next; n=n[j]; break(2))); n[1]\6+1) /* This uses sum2sqr(), cf. A133388. Below some simpler but much slower code. */
my(P=A000326(n)=n*(3*n-1)/2, isPent(t)=P(sqrtint(t*2\3)+1)==t); for(i=1, 299, for(j=1, (i+1)\sqrt(2), isPent(P(i)-P(j))&print1(j", ")||next(2)))
|
|
CROSSREFS
|
Cf. A000326, A136112-A136117.
Sequence in context: A245073 A021650 A141269 * A105665 A019129 A019208
Adjacent sequences: A136115 A136116 A136117 * A136119 A136120 A136121
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
M. F. Hasler, Dec 25 2007
|
|
STATUS
|
approved
|
|
|
|