login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137493
Numbers with 30 divisors.
8
720, 1008, 1200, 1584, 1620, 1872, 2268, 2352, 2448, 2592, 2736, 2800, 3312, 3564, 3888, 3920, 4050, 4176, 4212, 4400, 4464, 4608, 5200, 5328, 5508, 5808, 5904, 6156, 6192, 6768, 6800, 7452, 7500, 7600, 7632, 7938, 8112, 8496, 8624, 8784, 9200, 9396
OFFSET
1,1
COMMENTS
Maple implementation: see A030513.
Numbers of the form p^29 (subset of A122970), p*q^2*r^4 (A179669), p^4*q^5 (A179702), p^2*q^9 (like 4608) or p*q^14, where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010
FORMULA
A000005(a(n))=30.
MATHEMATICA
Select[Range[10000], DivisorSigma[0, #]==30&] (* Harvey P. Dale, Feb 18 2011 *)
PROG
(PARI) is(n)=numdiv(n)==30 \\ Charles R Greathouse IV, Jun 19 2016
(PARI) list(lim)=
{
my(f=(v, s)->concat(v, listsig(lim, s, 1)));
Set(fold(f, [[], [29], [5, 4], [9, 2], [14, 1], [4, 2, 1]]));
}
listsig(lim, sig, coprime)=
{
my(e=sig[1]);
if(#sig<2,
if(#sig==0 || sig[1]==0, return(if(lim<1, [], [1])));
my(P=primes([2, sqrtnint(lim\1, e)]));
if(coprime==1, return(if(e>1, apply(p->p^e, P), P)));
P=select(p->gcd(p, coprime)==1, P);
if(e>1, P=apply(p->p^e, P));
return(P);
);
my(v=List(), ss=sig[2..#sig], t=leastOfSig(ss));
forprime(p=2, sqrtnint(lim\t, e),
if(coprime%p,
my(u=listsig(lim\p^e, ss, coprime*p));
for(i=1, #u, listput(v, p^e*u[i]));
)
);
Vec(v);
} \\ Charles R Greathouse IV, Nov 18 2021
CROSSREFS
Cf. A137492 (29 divs), A139571 (31 divs).
Sequence in context: A067892 A337036 A257416 * A179669 A067808 A302127
KEYWORD
nonn
AUTHOR
R. J. Mathar, Apr 22 2008
STATUS
approved