Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 18 2021 13:40:40
%S 720,1008,1200,1584,1620,1872,2268,2352,2448,2592,2736,2800,3312,3564,
%T 3888,3920,4050,4176,4212,4400,4464,4608,5200,5328,5508,5808,5904,
%U 6156,6192,6768,6800,7452,7500,7600,7632,7938,8112,8496,8624,8784,9200,9396
%N Numbers with 30 divisors.
%C Maple implementation: see A030513.
%C Numbers of the form p^29 (subset of A122970), p*q^2*r^4 (A179669), p^4*q^5 (A179702), p^2*q^9 (like 4608) or p*q^14, where p, q and r are distinct primes. - _R. J. Mathar_, Mar 01 2010
%H T. D. Noe, <a href="/A137493/b137493.txt">Table of n, a(n) for n = 1..1000</a>
%F A000005(a(n))=30.
%t Select[Range[10000],DivisorSigma[0,#]==30&] (* _Harvey P. Dale_, Feb 18 2011 *)
%o (PARI) is(n)=numdiv(n)==30 \\ _Charles R Greathouse IV_, Jun 19 2016
%o (PARI) list(lim)=
%o {
%o my(f=(v,s)->concat(v,listsig(lim,s,1)));
%o Set(fold(f, [[], [29], [5, 4], [9, 2], [14, 1], [4, 2, 1]]));
%o }
%o listsig(lim, sig, coprime)=
%o {
%o my(e=sig[1]);
%o if(#sig<2,
%o if(#sig==0 || sig[1]==0, return(if(lim<1,[],[1])));
%o my(P=primes([2,sqrtnint(lim\1,e)]));
%o if(coprime==1, return(if(e>1,apply(p->p^e,P),P)));
%o P=select(p->gcd(p,coprime)==1, P);
%o if(e>1, P=apply(p->p^e, P));
%o return(P);
%o );
%o my(v=List(),ss=sig[2..#sig],t=leastOfSig(ss));
%o forprime(p=2,sqrtnint(lim\t,e),
%o if(coprime%p,
%o my(u=listsig(lim\p^e,ss,coprime*p));
%o for(i=1,#u, listput(v,p^e*u[i]));
%o )
%o );
%o Vec(v);
%o } \\ _Charles R Greathouse IV_, Nov 18 2021
%Y Cf. A137492 (29 divs), A139571 (31 divs).
%K nonn
%O 1,1
%A _R. J. Mathar_, Apr 22 2008