The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136649 Binomial transform of A014070: a(n) = Sum_{k=0..n} C(n,k)*C(2^k,k). 1
 1, 3, 11, 81, 2089, 211107, 76211147, 95054910473, 410422012327681, 6211807332775516467, 334327967114349983723899, 64835852334793138873642165105, 45812640033676518721399820389451657 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..59 FORMULA G.f.: A(x) = (1/(1-x))*Sum_{n>=0} [log(1 + (2^n-1)*x) - log(1-x)]^n / n!. From Vaclav Kotesovec, Jul 02 2016: (Start) a(n) ~ binomial(2^n,n). a(n) ~ 2^(n^2) / n!. a(n) ~ 2^(n^2 - 1/2) * exp(n) / (sqrt(Pi) * n^(n+1/2)). (End) MATHEMATICA Table[Sum[Binomial[n, k]*Binomial[2^k, k], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(n, k)*binomial(2^k, k))} (PARI) /* Using the g.f.: */ {a(n)=local(X=x+x*O(x^n)); polcoeff(sum(k=0, n, (log(1+(2^k-1)*X)-log(1-X))^k/k!)/(1-X), n)} CROSSREFS Cf. A014070 (C(2^n, n)), A134173. Partial sums of A180687. Sequence in context: A232468 A099341 A129114 * A342058 A062580 A335968 Adjacent sequences: A136646 A136647 A136648 * A136650 A136651 A136652 KEYWORD nonn AUTHOR Paul D. Hanna and Vladeta Jovovic, Jan 21 2008 EXTENSIONS Edited by Charles R Greathouse IV, Oct 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:10 EST 2023. Contains 367629 sequences. (Running on oeis4.)