login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136649
Binomial transform of A014070: a(n) = Sum_{k=0..n} C(n,k)*C(2^k,k).
1
1, 3, 11, 81, 2089, 211107, 76211147, 95054910473, 410422012327681, 6211807332775516467, 334327967114349983723899, 64835852334793138873642165105, 45812640033676518721399820389451657
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = (1/(1-x))*Sum_{n>=0} [log(1 + (2^n-1)*x) - log(1-x)]^n / n!.
From Vaclav Kotesovec, Jul 02 2016: (Start)
a(n) ~ binomial(2^n,n).
a(n) ~ 2^(n^2) / n!.
a(n) ~ 2^(n^2 - 1/2) * exp(n) / (sqrt(Pi) * n^(n+1/2)). (End)
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[2^k, k], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*binomial(2^k, k))}
(PARI) /* Using the g.f.: */ {a(n)=local(X=x+x*O(x^n)); polcoeff(sum(k=0, n, (log(1+(2^k-1)*X)-log(1-X))^k/k!)/(1-X), n)}
CROSSREFS
Cf. A014070 (C(2^n, n)), A134173.
Partial sums of A180687.
Sequence in context: A232468 A099341 A129114 * A342058 A062580 A335968
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Charles R Greathouse IV, Oct 28 2009
STATUS
approved