OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..59
FORMULA
G.f.: A(x) = (1/(1-x))*Sum_{n>=0} [log(1 + (2^n-1)*x) - log(1-x)]^n / n!.
From Vaclav Kotesovec, Jul 02 2016: (Start)
a(n) ~ binomial(2^n,n).
a(n) ~ 2^(n^2) / n!.
a(n) ~ 2^(n^2 - 1/2) * exp(n) / (sqrt(Pi) * n^(n+1/2)). (End)
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[2^k, k], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*binomial(2^k, k))}
(PARI) /* Using the g.f.: */ {a(n)=local(X=x+x*O(x^n)); polcoeff(sum(k=0, n, (log(1+(2^k-1)*X)-log(1-X))^k/k!)/(1-X), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna and Vladeta Jovovic, Jan 21 2008
EXTENSIONS
Edited by Charles R Greathouse IV, Oct 28 2009
STATUS
approved