login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180687
G.f.: A(x) = Sum_{n>=0} log(1 + 2^n*x/(1-x))^n/n!.
1
1, 2, 8, 70, 2008, 209018, 76000040, 94978699326, 410326957417208, 6211396910763188786, 334321755307017208207432, 64835518006826024523658441206, 45812575197824183928260946747286552
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(2^k, k) * binomial(n-1, n-k) for n >= 0. - Paul D. Hanna, Apr 04 2023
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 70*x^4 + 2008*x^5 +...
A(x) = Sum_{n>=0} log(1 + 2^n*x + 2^n*x^2 + 2^n*x^3 + 2^n*x^4 +...)^n/n!.
A(x) = 1 + log(1+2x/(1-x)) + log(1+4x/(1-x))^2/2! + log(1+8x/(1-x))^3/3! +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, log(1+2^m*x/(1-x+x*O(x^n)))^m/m!), n)}
CROSSREFS
Cf. variants: A159602, A060690.
Sequence in context: A123117 A330676 A062733 * A356811 A296629 A026739
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 16 2010
STATUS
approved