OFFSET
1,1
COMMENTS
By definition, the smaller number in a pair of two consecutive Fibonacci numbers in A061305. a(9), if it exists, is >= A000045(230), so it has at least 48 digits. [R. J. Mathar, Feb 06 2010]
A search for consecutive numbers in the union of A072381 and A001605 shows that a(9) must be larger than A000045(990), a number with 207 digits, if it exists. [R. J. Mathar, Jun 02 2010]
FORMULA
Let F(n) = n-th Fibonacci number and define a 2-almost prime number to be a number with only 2 prime divisors with multiplicity.
EXAMPLE
(55,89) is an almost twin Fibonacci prime pair because 55=5*11 is a 2-almost prime and 89 is prime.
MATHEMATICA
Fibonacci[#]&/@(SequencePosition[Table[If[PrimeOmega[f]<=2, 1, 0], {f, Fibonacci[ Range[150]]}], {1, 1}][[All, 1]]) (* Harvey P. Dale, Mar 29 2022 *)
PROG
(PARI) ATfib(n) = for(x=3, n, f1=fibonacci(x); f2=fibonacci(x+1); if(bigomega (f1)<=2&&bigomega(f2)<=2, print1(f1", ")))
(PARI) for( k=3, 10^5, bigomega( fibonacci( k++ ))>2 & next; bigomega( fibonacci( k-1 ))>2 & next; print1(fibonacci(k--)", ")) \\ M. F. Hasler, May 01 2008
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Cino Hilliard, Mar 28 2008
EXTENSIONS
Edited by M. F. Hasler, May 01 2008
STATUS
approved