login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135807
Tenth column (k=9) of triangle A134832 (circular succession numbers).
2
1, 0, 0, 220, 715, 16016, 180180, 2619760, 39503750, 642172960, 11111964864, 204016477080, 3959206825210, 80952590044480, 1739019535313720, 39150661649469744, 921633956154372175, 22640304292494917600
OFFSET
0,4
COMMENTS
a(n) enumerates circular permutations of {1,2,...,n+9} with exactly nine successor pairs (i,i+1). Due to cyclicity also (n+9,1) is a successor pair.
REFERENCES
Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=9.
LINKS
FORMULA
a(n) = binomial(n+9,9)*A000757(n), n>=0.
E.g.f.: (d^9/dx^9) (x^9/9!)*(1-log(1-x))/e^x.
EXAMPLE
a(0)=1 because from the 9!/9 = 40320 circular permutations of n=9 elements only one, namely (1,2,3,4,5,6,7,8,9), has nine successors.
MATHEMATICA
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 9], {n, 9, 25}] (* G. C. Greubel, Nov 10 2016 *)
PROG
(PARI) a(n)=((-1)^n + sum( k=0, n-1, (-1)^k * binomial( n, k) * (n - k - 1)!))*binomial(n+9, 9) \\ Charles R Greathouse IV, Nov 10 2016
CROSSREFS
Cf. A135806 (column k=8).
Sequence in context: A184543 A234558 A211816 * A258545 A257361 A258538
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 21 2008, Feb 22 2008
STATUS
approved