Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 01 2023 08:27:42
%S 1,0,0,220,715,16016,180180,2619760,39503750,642172960,11111964864,
%T 204016477080,3959206825210,80952590044480,1739019535313720,
%U 39150661649469744,921633956154372175,22640304292494917600
%N Tenth column (k=9) of triangle A134832 (circular succession numbers).
%C a(n) enumerates circular permutations of {1,2,...,n+9} with exactly nine successor pairs (i,i+1). Due to cyclicity also (n+9,1) is a successor pair.
%D Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=9.
%H G. C. Greubel, <a href="/A135807/b135807.txt">Table of n, a(n) for n = 0..440</a>
%F a(n) = binomial(n+9,9)*A000757(n), n>=0.
%F E.g.f.: (d^9/dx^9) (x^9/9!)*(1-log(1-x))/e^x.
%e a(0)=1 because from the 9!/9 = 40320 circular permutations of n=9 elements only one, namely (1,2,3,4,5,6,7,8,9), has nine successors.
%t f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 9], {n, 9, 25}] (* _G. C. Greubel_, Nov 10 2016 *)
%o (PARI) a(n)=((-1)^n + sum( k=0, n-1, (-1)^k * binomial( n, k) * (n - k - 1)!))*binomial(n+9,9) \\ _Charles R Greathouse IV_, Nov 10 2016
%Y Cf. A135806 (column k=8).
%K nonn,easy
%O 0,4
%A _Wolfdieter Lang_, Jan 21 2008, Feb 22 2008