login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135778
Numbers having number of divisors equal to number of digits in base 8.
3
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 121, 169, 289, 361, 514, 515, 517, 519, 526, 527, 533, 535, 537, 538, 542, 543, 545, 551, 553, 554, 559, 562, 565, 566, 573, 579, 581, 583, 586, 589, 591, 597, 611, 614, 622, 623, 626, 629, 633, 634
OFFSET
1,2
COMMENTS
Since 8 is not a prime, no element > 1 of the sequence A001018(k)=8^k (having k+1 digits in base 8, but much more divisors) can be member of this sequence. Also, no power of a prime less than 8 can be in the sequence, since it will always have fewer divisors than digits in base 8. However all powers of 11 up to 11^6 are in this sequence, having the same number of digits (in base 8) than the same power of 8 (since 6 = floor(log(11/8)/log(8))) and also that number of divisors (since 11 is prime).
LINKS
EXAMPLE
a(1) = 1 since 1 has 1 divisor and 1 digit (in base 8 as in any other base).
They are followed by the primes (having 2 divisors {1,p}) between 8 and 8^2 - 1 (to have 2 digits in base 8).
Then come the squares of primes (3 divisors) between 8^2 = 100_8 and 8^3 - 1 = 777_8.
These are followed by all semiprimes and cubes of primes (4 divisors) between 8^3 and 8^4 - 1.
MATHEMATICA
Select[Range[1000], IntegerLength[#, 8]==DivisorSigma[0, #]&] (* Harvey P. Dale, Mar 04 2016 *)
PROG
(PARI) for(d=1, 4, for(n=8^(d-1), 8^d-1, d==numdiv(n)&print1(n", ")))
CROSSREFS
KEYWORD
base,nonn
AUTHOR
M. F. Hasler, Nov 28 2007
EXTENSIONS
More terms from Harvey P. Dale, Mar 04 2016
STATUS
approved