

A095862


Numbers n such that number of decimal digits of n = number of divisors of n.


13



1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 121, 169, 289, 361, 529, 841, 961, 1003, 1006, 1007, 1011, 1018, 1027, 1037, 1041, 1042, 1043, 1046, 1047, 1055, 1057, 1059, 1067, 1073, 1077, 1079, 1081, 1082, 1094, 1099
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

An element of this sequence is prime iff it has 2 digits, which is the case for a(2)=11 through a(22); sequence A096489 lists exactly these and the leading term a(1)=1 (the only noncomposite number which is not prime).  M. F. Hasler, Nov 29 2007


LINKS

Table of n, a(n) for n=1..52.


MAPLE

with(numtheory);
T:=proc(t) local x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
P:=proc(q) local a, n; for n from 1 to q do a:=sort([op(divisors(n))]); a:=nops(a);
if a=T(n) then print(n); fi; od; end: P(10^6); # Paolo P. Lava, May 27 2014


MATHEMATICA

Select[Range[1100], IntegerLength[#]==DivisorSigma[0, #]&] (* Harvey P. Dale, Oct 19 2015 *)


CROSSREFS

Cf. A096489 (= a(1)..a(22) = noncomposite elements of this sequence).
Cf. A135772A135779 (analog for bases 2...9).
Sequence in context: A120533 A226108 A273906 * A125845 A108871 A268031
Adjacent sequences: A095859 A095860 A095861 * A095863 A095864 A095865


KEYWORD

base,nonn


AUTHOR

Ray Chandler, Jun 28 2004


EXTENSIONS

Edited by M. F. Hasler, Nov 29 2007


STATUS

approved



