login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135569
a(n) = S2(n)*2^n; where S2(n) is digit sum of n, n in binary notation.
1
0, 2, 4, 16, 16, 64, 128, 384, 256, 1024, 2048, 6144, 8192, 24576, 49152, 131072, 65536, 262144, 524288, 1572864, 2097152, 6291456, 12582912, 33554432, 33554432, 100663296, 201326592, 536870912, 805306368, 2147483648, 4294967296
OFFSET
0,2
LINKS
FORMULA
For all n we have 2/n <= a(n+1)/a(n)<= 4. This holds because a(2^n -1)= n*2^(2^n -1); a(2^n) = 2^2^n; a(2^n +1) = 4*2^2^n.
a(n) = A000120(n)*2^n. - R. J. Mathar, Mar 03 2008
MAPLE
A000120 := proc(n) add(i, i=convert(n, base, 2)) ; end: A135569 := proc(n) A000120(n)*2^n ; end: seq(A135569(n), n=0..80) ; # R. J. Mathar, Mar 03 2008
MATHEMATICA
Table[DigitCount[n, 2, 1]*2^n, {n, 0, 25}] (* G. C. Greubel, Oct 19 2016 *)
CROSSREFS
Sequence in context: A067846 A155893 A196202 * A370874 A337109 A210579
KEYWORD
easy,nonn,base
AUTHOR
Ctibor O. Zizka, Feb 23 2008, Mar 03 2008
EXTENSIONS
Corrected and extended by R. J. Mathar, Mar 03 2008
STATUS
approved