login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = S2(n)*2^n; where S2(n) is digit sum of n, n in binary notation.
1

%I #9 Oct 19 2016 15:08:36

%S 0,2,4,16,16,64,128,384,256,1024,2048,6144,8192,24576,49152,131072,

%T 65536,262144,524288,1572864,2097152,6291456,12582912,33554432,

%U 33554432,100663296,201326592,536870912,805306368,2147483648,4294967296

%N a(n) = S2(n)*2^n; where S2(n) is digit sum of n, n in binary notation.

%H G. C. Greubel, <a href="/A135569/b135569.txt">Table of n, a(n) for n = 0..1000</a>

%F For all n we have 2/n <= a(n+1)/a(n)<= 4. This holds because a(2^n -1)= n*2^(2^n -1); a(2^n) = 2^2^n; a(2^n +1) = 4*2^2^n.

%F a(n) = A000120(n)*2^n. - _R. J. Mathar_, Mar 03 2008

%p A000120 := proc(n) add(i,i=convert(n,base,2)) ; end: A135569 := proc(n) A000120(n)*2^n ; end: seq(A135569(n),n=0..80) ; # _R. J. Mathar_, Mar 03 2008

%t Table[DigitCount[n, 2, 1]*2^n, {n, 0, 25}] (* _G. C. Greubel_, Oct 19 2016 *)

%Y Cf. A000120, A010060.

%K easy,nonn,base

%O 0,2

%A _Ctibor O. Zizka_, Feb 23 2008, Mar 03 2008

%E Corrected and extended by _R. J. Mathar_, Mar 03 2008