login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370874
Number of partitions of 4n whose xor-sum is 2n.
2
1, 2, 4, 16, 16, 65, 153, 411, 165, 437, 931, 2317, 4802, 10595, 21565, 43211, 5014, 10911, 22466, 44695, 83058, 156147, 286432, 516479, 595305, 1133892, 2111273, 3803940, 6731760, 11653790, 19886537, 33275225, 916662, 1593595, 2753582, 4676617, 7866137
OFFSET
0,2
FORMULA
a(n) = A050314(4n,2n).
EXAMPLE
a(0) = 1: the empty partition.
a(1) = 2: 211, 31.
a(2) = 4: 41111, 422, 5111, 62.
a(3) = 16: 42111111, 422211, 4311111, 43221, 4332, 5211111, 52221, 531111, 5322, 6111111, 62211, 6321, 633, 711111, 7221, 732.
a(4) = 16: 811111111, 8221111, 82222, 832111, 83311, 844, 91111111, 922111, 93211, 9331, (10)21111, (10)222, (10)3111, (11)2111, (11)311, (12)4.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
`if`(i<1 or ilog2(k)>ilog2(i), 0, b(n, i-1, k)+
b(n-i, min(n-i, i), Bits[Xor](i, k))))
end:
a:= n-> b(4*n$2, 2*n):
seq(a(n), n=0..36);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 25 2024
STATUS
approved