OFFSET
1,2
COMMENTS
Numbers n such that equation 6^x-y^2=n has more than one solution.
EXAMPLE
0=6^(2k)-(6^k)^2, k=1,2,..
20=6^2-4^2=6^3-14^2,
32=6^2-2^2=6^5-88^2,
95=6^3-11^2=6^7-529^2,
207=6^3-3^2=6^4-33^2=6^5-87^2,
720=6^4-24^2=6^5-84^2,
1152=6^4-12^2=6^7-528^2,
1215=6^4-9^2=6^5-81^2,
1287=6^4-3^2=6^6-213^2.
MATHEMATICA
lst = {}; Do[ t = 6^x - y^2; If[t < 10^7/7, AppendTo[lst, t]], {x, 185}, {y, (a = Floor@Sqrt[6^x - 10^7]; If[Element[a, Reals], a, 0]), Floor@Sqrt[6^x]}]; lst = Sort@lst; lsu = {}; Do[ If[lst[[n]] == lst[[n + 1]], AppendTo[lsu, lst[[n]]]], {n, -1 + Length@lst}]; Union@lsu - Robert G. Wilson v, Feb 09 2008
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Feb 05 2008
EXTENSIONS
More terms from Robert G. Wilson v, Feb 09 2008
STATUS
approved