login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133225 Largest prime <= 2^((n+1)/2). 2
2, 2, 3, 5, 7, 11, 13, 19, 31, 43, 61, 89, 127, 181, 251, 359, 509, 719, 1021, 1447, 2039, 2887, 4093, 5791, 8191, 11579, 16381, 23167, 32749, 46337, 65521, 92681, 131071, 185363, 262139, 370723, 524287, 741431, 1048573, 1482907, 2097143, 2965819 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

If one is trying to decide whether an n+1 digit binary number is prime, this is the largest prime for which one needs to test divisibility. For example a six digit number like 110101 must be below 64, so only primes up to 7 are needed to test divisibility. Compare with sequence A132153.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = A007917[A017910(n+1)]. - R. J. Mathar

MAPLE

seq(prevprime(floor(2^((n+1)*1/2))+1), n=1..40); # Emeric Deutsch

A017910 := proc(n) floor(2^(n/2)) ; end: A007917 := proc(n) prevprime(n+1) ; end: A133225 := proc(n) A007917(A017910(n+1)) ; end: seq(A133225(n), n=1..60) ; # R. J. Mathar

MATHEMATICA

PrevPrim[n_] := Block[{k = n}, While[ !PrimeQ@k, k-- ]; k]; f[n_] := PrevPrim@ Floor@ Sqrt[2^(n + 1)]; Array[f, 42] (* Robert G. Wilson v *)

Table[Prime[PrimePi[2^((n + 1)/2)]], {n, 1, 50}] (* Stefan Steinerberger *)

lp[n_]:=Module[{c=2^((n+1)/2)}, If[PrimeQ[c], c, NextPrime[c, -1]]]; Array[lp, 50] (* Harvey P. Dale, Aug 25 2013 *)

CROSSREFS

Cf. A132153.

Sequence in context: A316075 A322429 A039894 * A240487 A066889 A214040

Adjacent sequences:  A133222 A133223 A133224 * A133226 A133227 A133228

KEYWORD

nonn

AUTHOR

Anthony C Robin, Jan 03 2008

EXTENSIONS

More terms from Stefan Steinerberger, R. J. Mathar, Robert G. Wilson v and Emeric Deutsch, Jan 06 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 6 02:46 EDT 2021. Contains 343579 sequences. (Running on oeis4.)