login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest prime <= 2^((n+1)/2).
2

%I #13 Sep 16 2015 14:02:43

%S 2,2,3,5,7,11,13,19,31,43,61,89,127,181,251,359,509,719,1021,1447,

%T 2039,2887,4093,5791,8191,11579,16381,23167,32749,46337,65521,92681,

%U 131071,185363,262139,370723,524287,741431,1048573,1482907,2097143,2965819

%N Largest prime <= 2^((n+1)/2).

%C If one is trying to decide whether an n+1 digit binary number is prime, this is the largest prime for which one needs to test divisibility. For example a six digit number like 110101 must be below 64, so only primes up to 7 are needed to test divisibility. Compare with sequence A132153.

%H Harvey P. Dale, <a href="/A133225/b133225.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A007917[A017910(n+1)]. - _R. J. Mathar_

%p seq(prevprime(floor(2^((n+1)*1/2))+1),n=1..40); # _Emeric Deutsch_

%p A017910 := proc(n) floor(2^(n/2)) ; end: A007917 := proc(n) prevprime(n+1) ; end: A133225 := proc(n) A007917(A017910(n+1)) ; end: seq(A133225(n),n=1..60) ; # _R. J. Mathar_

%t PrevPrim[n_] := Block[{k = n}, While[ !PrimeQ@k, k-- ]; k]; f[n_] := PrevPrim@ Floor@ Sqrt[2^(n + 1)]; Array[f, 42] (* _Robert G. Wilson v_ *)

%t Table[Prime[PrimePi[2^((n + 1)/2)]], {n, 1, 50}] (* _Stefan Steinerberger_ *)

%t lp[n_]:=Module[{c=2^((n+1)/2)},If[PrimeQ[c],c,NextPrime[c,-1]]]; Array[lp,50] (* _Harvey P. Dale_, Aug 25 2013 *)

%Y Cf. A132153.

%K nonn

%O 1,1

%A _Anthony C Robin_, Jan 03 2008

%E More terms from _Stefan Steinerberger_, _R. J. Mathar_, _Robert G. Wilson v_ and _Emeric Deutsch_, Jan 06 2008