login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A132826
Decimal expansion of the integer Googol!.
1
1, 6, 2, 9, 4, 0, 4, 3, 3, 2, 4, 5, 9, 3, 3, 7, 3, 7, 3, 4, 1, 7, 9, 3, 4, 6, 5, 2, 9, 8, 3, 5, 4, 2, 1, 7, 2, 8, 2, 1, 8, 8, 8, 4, 2, 6, 7, 1, 4, 8, 6, 6, 2, 3, 0, 3, 6, 2, 3, 6, 1, 1, 9, 3, 6, 9, 4, 0, 9, 2, 2, 0, 2, 9, 4, 5, 2, 5, 0, 4, 6, 8, 6, 6, 7, 9, 8, 5, 4, 4, 7, 0, 8, 4, 2, 2, 3, 1, 7, 8, 9, 2, 2, 8, 1
OFFSET
1,2
COMMENTS
The number in question has 9956570551809674817234887108108339491770560299419 \ 63334338855462168341353507911292252707750506615682568 digits and ends in exactly 10^101/8 - 18 zeros. - Robert G. Wilson v, Jan 09 2013
The last nonzero term of this sequence is 6. - Washington Bomfim, Dec 24 2010
REFERENCES
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math.; section 4, exercises 40, and 54.
FORMULA
10^100! = 1*2*3*4*...*(10^100-1)*10^100.
MATHEMATICA
f[n_] := 10^FractionalPart[N[(n*Log[n] - n + (1/2)*Log[(2*n + 1/3)*Pi])/Log[10], 203]]; RealDigits[ f[10^100], 10, 101][[1]] (* Robert G. Wilson v, Jan 09 2013 *)
CROSSREFS
Sequence in context: A246967 A351215 A215261 * A242724 A100123 A228040
KEYWORD
cons,nonn,fini
AUTHOR
Martin Raab, Nov 18 2007, Dec 11 2007
STATUS
approved