login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132824
Row sums of triangle A132823.
2
1, 2, 2, 4, 10, 24, 54, 116, 242, 496, 1006, 2028, 4074, 8168, 16358, 32740, 65506, 131040, 262110, 524252, 1048538, 2097112, 4194262, 8388564, 16777170, 33554384, 67108814, 134217676, 268435402, 536870856, 1073741766, 2147483588, 4294967234, 8589934528
OFFSET
0,2
FORMULA
Binomial transform of [1, 1, -1, 3, -1, 3, -1, 3, -1, 3, ...].
For n>0, a(n) = 2 + 2^n - 2*n = 1 + A183155(n-1). - R. J. Mathar, Apr 04 2012
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3) for n>3. - Colin Barker, Jun 06 2014
G.f.: -(4*x^3-x^2-2*x+1) / ((x-1)^2*(2*x-1)). - Colin Barker, Jun 06 2014
For n>1, a(n) = A132732(n-1). - Jeppe Stig Nielsen, Dec 29 2017
EXAMPLE
a(4) = 10 = sum of row 4 terms of triangle A132823: (1 + 2 + 4 + 2 + 1).
a(3) = 4 = (1, 3, 3, 1) dot (1, 1, -1, 3) = (1 + 3 -3 + 3).
MAPLE
A132824:=n->`if`(n=0, 1, 2+2^n-2*n); seq(A132824(n), n=0..30); # Wesley Ivan Hurt, Jun 06 2014
MATHEMATICA
a[0] = 1; a[n_] := 2 + 2^n - 2*n; Table[a[n], {n, 0, 30}] (* Wesley Ivan Hurt, Jun 06 2014 *)
CROSSREFS
Cf. A132823, A183155. Essentially the same as A132732.
Sequence in context: A100088 A217212 A025244 * A298898 A339830 A078801
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Sep 02 2007
STATUS
approved