|
|
A132350
|
|
If n > 1 is a k-th power with k >= 2 then a(n) = 0, otherwise a(n) = 1.
|
|
5
|
|
|
1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = 1 - A075802(n) for n >= 2. - R. J. Mathar, Nov 12 2007
Given the Möbius function mu(n) = A008683(n), a(n) = abs(mu(n)) unless n is in A303946. - Alonso del Arte, May 28 2018
|
|
EXAMPLE
|
a(4) = 0 because 4 = 2^2.
a(8) = 0 because 8 = 2^3.
a(12) = 1 because 12 is not a perfect power (though it is divisible by a perfect power).
|
|
MATHEMATICA
|
Table[Boole[GCD@@FactorInteger[n][[All, 2]] == 1], {n, 100}] (* Alonso del Arte, May 28 2018 *)
|
|
PROG
|
(PARI) (a(n)=!ispower(n)); (r(nMax) = for(j=1, nMax, print1(!ispower(j)", "))); r(100)
(Haskell)
a132350 1 = 1
a132350 n = 1 - a075802 n -- Reinhard Zumkeller, Jun 14 2013
|
|
CROSSREFS
|
Cf. A132349, A132351, A132352, A075802, A001597.
Sequence in context: A167021 A267687 A304653 * A076213 A120525 A285373
Adjacent sequences: A132347 A132348 A132349 * A132351 A132352 A132353
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Nov 11 2007
|
|
EXTENSIONS
|
Edited by M. F. Hasler, Jun 01 2018
|
|
STATUS
|
approved
|
|
|
|