login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If n > 1 is a k-th power with k >= 2 then a(n) = 0, otherwise a(n) = 1.
6

%I #30 Jun 01 2018 15:31:57

%S 1,1,1,0,1,1,1,0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,0,1,1,

%T 1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0

%N If n > 1 is a k-th power with k >= 2 then a(n) = 0, otherwise a(n) = 1.

%H Antti Karttunen, <a href="/A132350/b132350.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = 1 - A075802(n) for n >= 2. - _R. J. Mathar_, Nov 12 2007

%F Given the Möbius function mu(n) = A008683(n), a(n) = abs(mu(n)) unless n is in A303946. - _Alonso del Arte_, May 28 2018

%e a(4) = 0 because 4 = 2^2.

%e a(8) = 0 because 8 = 2^3.

%e a(12) = 1 because 12 is not a perfect power (though it is divisible by a perfect power).

%t Table[Boole[GCD@@FactorInteger[n][[All, 2]] == 1], {n, 100}] (* _Alonso del Arte_, May 28 2018 *)

%o (PARI) (a(n)=!ispower(n)); (r(nMax) = for(j=1,nMax,print1(!ispower(j)","))); r(100)

%o (Haskell)

%o a132350 1 = 1

%o a132350 n = 1 - a075802 n -- _Reinhard Zumkeller_, Jun 14 2013

%Y Cf. A132349, A132351, A132352, A075802, A001597.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Nov 11 2007

%E Edited by _M. F. Hasler_, Jun 01 2018