login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076213
2*a(n)-1 = sign(A005132(n+1)-A005132(n)).
3
1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0
OFFSET
0,1
COMMENTS
Characteristic function of A057165 - 1. - M. F. Hasler, Jun 03 2009
FORMULA
Conjecture: let s(n)=sum(k=1, n, a(k)), then lim n ->infinity s(n)/n = 1/2; for any n, 2*s(n) > n; let v(n)=2*s(n)-n, then v(n)/log(n) is bounded and sum(k=1, n, v(k)) is asymptotic to c*n*log(n) with 1 < c < 3/2.
a(n) = 1-A160351(n+1) = (A160357(n)+1)/2. - M. F. Hasler, Jun 03 2009
CROSSREFS
Sequence in context: A267687 A304653 A132350 * A368907 A120525 A285373
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 03 2002
EXTENSIONS
Added initial value a(0)=1. - M. F. Hasler, Jun 03 2009
STATUS
approved