login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132265
Decimal expansion of Product_{k>=0} (1 - 1/(2*11^k)).
11
4, 7, 5, 1, 0, 4, 1, 2, 7, 5, 0, 7, 6, 0, 3, 1, 0, 5, 3, 9, 7, 5, 6, 4, 4, 4, 7, 2, 9, 4, 6, 9, 7, 6, 9, 4, 3, 3, 6, 9, 7, 1, 9, 2, 1, 1, 7, 0, 8, 5, 1, 1, 6, 3, 8, 0, 0, 7, 7, 3, 6, 6, 5, 4, 1, 3, 0, 4, 7, 5, 4, 4, 5, 7, 2, 4, 8, 7, 7, 3, 7, 2, 3, 0, 8, 4, 3, 7, 6, 9, 3, 7, 4, 4, 1, 6, 8, 2, 4, 9, 8, 2, 2, 7, 3
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
FORMULA
lim inf Product_{k=0..floor(log_11(n))} floor(n/11^k)*11^k/n for n-->oo.
lim inf A132263(n)*11^((1+floor(log_11(n)))*floor(log_11(n))/2)/n^(1+floor(log_11(n))) for n-->oo.
lim inf A132263(n)*11^A000217(floor(log_11(n)))/n^(1+floor(log_11(n))) for n-->oo.
(1/2)*exp(-Sum_{n>0} 11^(-n)*Sum_{k|n} 1/(k*2^k)).
lim inf A132263(n)/A132263(n+1) = 0.47510412750760310539756444... for n-->oo.
Equals (1/2; 1/11)_{infinity}, where (a;q)_{infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 30 2015
EXAMPLE
0.47510412750760310539756444...
MATHEMATICA
digits = 105; NProduct[1-1/(2*11^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+10] // N[#, digits+10]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
N[QPochhammer[1/2, 1/11]] (* G. C. Greubel, Nov 30 2015 *)
PROG
(PARI) prodinf(x=0, 1 - 1/(2*11^x)) \\ Altug Alkan, Dec 01 2015
KEYWORD
nonn,cons
AUTHOR
Hieronymus Fischer, Aug 20 2007
STATUS
approved