login
A131835
Numbers starting with 1.
26
1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142
OFFSET
1,2
COMMENTS
The lower and upper asymptotic densities of this sequence are 1/9 and 5/9, respectively. - Amiram Eldar, Feb 27 2021
LINKS
Bryan Brown, Michael Dairyko, Stephan Ramon Garcia, Bob Lutz and Michael Someck, Four quotient set gems, The American Mathematical Monthly, Vol. 121, No. 7 (2014), pp. 590-598; arXiv preprint, arXiv:1312.1036 [math.NT], 2013.
FORMULA
A000030(a(n)) = 1. - Reinhard Zumkeller, Jul 16 2014
a(A002275(n)+1) = 10^n for any n >= 0. - Rémy Sigrist, Jun 23 2017
a(n) = n + (8*10^floor(log_10(9*n-8))-8)/9. - Alan Michael Gómez Calderón, May 16 2023
MAPLE
isA131835 := proc(n) if op(-1, convert(n, base, 10)) = 1 then true; else false ; fi ; end: for n from 1 to 300 do if isA131835(n) then printf("%d, ", n) ; fi ; od : # R. J. Mathar, Jul 24 2007
MATHEMATICA
Select[Range[150], IntegerDigits[#][[1]] == 1 &] (* Amiram Eldar, Feb 27 2021 *)
PROG
(Haskell)
a131835 n = a131835_list !! (n-1)
a131835_list = concat $
iterate (concatMap (\x -> map (+ 10 * x) [0..9])) [1]
-- Reinhard Zumkeller, Jul 16 2014
(PARI) a(n, {base=10}) = my (o=1); while (n>o, n-=o; o*=base); return (o+n-1) \\ Rémy Sigrist, Jun 23 2017
(PARI) a(n) = n--; s = #digits(9*n+1); n + 8 * (10^(s-1))/9 + 1/9 \\ David A. Corneth, Jun 23 2017
(PARI) nxt(n) = my(d = digits(n+1)); if(d[1]==1, n+1, 10^#d) \\ David A. Corneth, Jun 23 2017
(Python)
def A131835(n): return n+(10**(len(str(9*n-8))-1)<<3)//9 # Chai Wah Wu, Dec 07 2024
CROSSREFS
Subsequence of A011531.
Disjoint union of A045707 and A206286.
Cf. A000030, A000027, A002275, A262390 (permutation).
Sequence in context: A169905 A076161 A318699 * A262390 A102236 A250040
KEYWORD
nonn,base,easy
AUTHOR
Andrew Good (yipes_stripes(AT)yahoo.com), Jul 20 2007
EXTENSIONS
More terms from R. J. Mathar, Jul 24 2007
STATUS
approved