login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131836
Multiplicative persistence of the Sierpinski numbers of the first kind (n^n + 1).
2
0, 0, 2, 2, 3, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,3
COMMENTS
Question: Are there any terms larger than 1 after a(22) = 2? In other words, do all terms of A014566 contain zero somewhere in their decimal representation after A014566(22) = 341427877364219557396646723585? - Antti Karttunen, Oct 08 2017
LINKS
FORMULA
a(n) = A031346(A014566(n)). - Michel Marcus, Oct 08 2017
EXAMPLE
For n=4 we have A014566(4) = Sierpinski number 257 --> 2*5*7 = 70 --> 7*0 = 0 thus persistence = 2, and a(4) = 2. - Edited by Antti Karttunen, Oct 08 2017
MAPLE
P:=proc(n) local i, k, w, ok, cont; for i from 1 by 1 to n do w:=1; k:=i^i+1; ok:=1; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(100);
MATHEMATICA
Table[-1 + Length@ NestWhileList[Times @@ IntegerDigits@ # &, If[n == 0, 2, n^n + 1], # > 9 &], {n, 105}] (* Michael De Vlieger, Oct 08 2017 *)
PROG
(Scheme)
;; The whole program follows:
(define (A131836 n) (A031346 (A014566 n)))
(define (A014566 n) (+ 1 (expt n n)))
(define (A031346 n) (let loop ((n n) (k 0)) (if (< n 10) k (loop (A007954 n) (+ 1 k)))))
(define (A007954 n) (if (zero? n) n (let loop ((n n) (m 1)) (if (zero? n) m (let ((d (modulo n 10))) (loop (/ (- n d) 10) (* d m)))))))
;; Antti Karttunen, Oct 08 2017
CROSSREFS
Sequence in context: A285727 A281908 A106441 * A133829 A364925 A160651
KEYWORD
easy,nonn,base
AUTHOR
STATUS
approved