OFFSET
0,8
COMMENTS
Up to signs, the first differences are in A131804. - R. J. Mathar, Mar 17 2009
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
From R. J. Mathar, Mar 17 2009: (Start)
a(n) = -2*a(n-1) -2*a(n-2) -2*a(n-3) +2*a(n-5) +2*a(n-6) +2*a(n-7) +a(n-8).
G.f.: x^2*(1+x^2+x^3+2*x)/((1-x)*(1+x^2)^2*(1+x)^3). (End)
a(n) = ((-2*n^2+4*n+7)*(-1)^n - 2*((n+4)+(n+2)*(-1)^n)*i^(n*(n+1))+5)/32, where i=sqrt(-1). - Bruno Berselli, Mar 27 2012
MAPLE
seq(((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^binomial(n+1, 2) +5)/32, n=0..60); # G. C. Greubel, Nov 18 2019
MATHEMATICA
Table[((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^Binomial[n+1, 2] +5)/32, {n, 0, 60}] (* G. C. Greubel, Nov 18 2019 *)
PROG
(PARI) a(n) = ((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^binomial(n+1, 2) +5)/32; \\ G. C. Greubel, Nov 18 2019
(Magma) [((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^Binomial(n+1, 2) +5)/32: n in [0..60]]; // G. C. Greubel, Nov 18 2019
(Sage) [((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^binomial(n+1, 2) +5)/32 for n in (0..60)] # G. C. Greubel, Nov 18 2019
(GAP) List([0..60], n-> ((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^Binomial(n+1, 2) +5)/32 ); # G. C. Greubel, Nov 18 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Sep 24 2007
EXTENSIONS
More terms from Sean A. Irvine, Mar 13 2011
STATUS
approved