login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131118
a(4n) = -n^2, a(4n+1) = n^2, a(4n+2) = 1-n^2, a(4n+3) = n*(n+1).
2
0, 0, 1, 0, -1, 1, 0, 2, -4, 4, -3, 6, -9, 9, -8, 12, -16, 16, -15, 20, -25, 25, -24, 30, -36, 36, -35, 42, -49, 49, -48, 56, -64, 64, -63, 72, -81, 81, -80, 90, -100, 100, -99, 110, -121, 121, -120, 132, -144, 144, -143, 156, -169, 169, -168
OFFSET
0,8
COMMENTS
Up to signs, the first differences are in A131804. - R. J. Mathar, Mar 17 2009
LINKS
FORMULA
From R. J. Mathar, Mar 17 2009: (Start)
a(n) = -2*a(n-1) -2*a(n-2) -2*a(n-3) +2*a(n-5) +2*a(n-6) +2*a(n-7) +a(n-8).
G.f.: x^2*(1+x^2+x^3+2*x)/((1-x)*(1+x^2)^2*(1+x)^3). (End)
a(n) = ((-2*n^2+4*n+7)*(-1)^n - 2*((n+4)+(n+2)*(-1)^n)*i^(n*(n+1))+5)/32, where i=sqrt(-1). - Bruno Berselli, Mar 27 2012
MAPLE
seq(((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^binomial(n+1, 2) +5)/32, n=0..60); # G. C. Greubel, Nov 18 2019
MATHEMATICA
Table[((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^Binomial[n+1, 2] +5)/32, {n, 0, 60}] (* G. C. Greubel, Nov 18 2019 *)
PROG
(PARI) a(n) = ((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^binomial(n+1, 2) +5)/32; \\ G. C. Greubel, Nov 18 2019
(Magma) [((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^Binomial(n+1, 2) +5)/32: n in [0..60]]; // G. C. Greubel, Nov 18 2019
(Sage) [((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^binomial(n+1, 2) +5)/32 for n in (0..60)] # G. C. Greubel, Nov 18 2019
(GAP) List([0..60], n-> ((7+4*n-2*n^2)*(-1)^n -2*((n+4)+(n+2)*(-1)^n)*(-1)^Binomial(n+1, 2) +5)/32 ); # G. C. Greubel, Nov 18 2019
CROSSREFS
Sequence in context: A135359 A098217 A151846 * A140765 A097541 A151819
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Sep 24 2007
EXTENSIONS
More terms from Sean A. Irvine, Mar 13 2011
STATUS
approved