The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140765 Array T(n,k) = binomial(k+2, k-1) + n*binomial(k+2, k) read by antidiagonals. 1
 0, 1, 1, 2, 4, 4, 3, 7, 10, 10, 4, 10, 16, 20, 20, 5, 13, 22, 30, 35, 35, 6, 16, 28, 40, 50, 56, 56, 7, 19, 34, 50, 65, 77, 84, 84, 8, 22, 40, 60, 80, 98, 112, 120, 120, 9, 25, 46, 70, 95, 119, 140, 156, 165, 165, 10, 28, 52, 80, 110, 140, 168, 192, 210, 220, 220, 11, 31, 58 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Table of n, a(n) for n=0..68. D. A. Sardelis, T. M. Valahas, On Multidimensional Pythagorean Numbers, arxiv:0805.4070 [math.GM], 2008, Table 6, eq 12. FORMULA T(n,k) = binomial(k+2, 3) + n*binomial(k+2, 2). EXAMPLE The array starts in row n=0 with columns k >= 0 as 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, ... 2, 7, 16, 30, 50, 77, 112, 156, 210, 275, 352, ... 3, 10, 22, 40, 65, 98, 140, 192, 255, 330, 418, ... 4, 13, 28, 50, 80, 119, 168, 228, 300, 385, 484, ... 5, 16, 34, 60, 95, 140, 196, 264, 345, 440, 550, ... ... MAPLE A140765 := proc(n, k) binomial(k+2, k-1)+n*binomial(k+2, k) ; end proc: # R. J. Mathar, Aug 31 2011 MATHEMATICA T[n_, k_] := Binomial[k + 2, k - 1] + n Binomial[k + 2, k]; Table[T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 03 2017 *) CROSSREFS Sequence in context: A098217 A151846 A131118 * A097541 A151819 A079560 Adjacent sequences: A140762 A140763 A140764 * A140766 A140767 A140768 KEYWORD nonn,tabl,easy AUTHOR Gary W. Adamson, May 28 2008 EXTENSIONS Definition substantiated by R. J. Mathar, Aug 31 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 29 02:52 EST 2024. Contains 370401 sequences. (Running on oeis4.)