login
A130818
Decimal expansion of number whose Engel expansion is the sequence of squares, that is, 1, 4, 9, 16,...
0
1, 2, 7, 9, 5, 8, 5, 3, 0, 2, 3, 3, 6, 0, 6, 7, 2, 6, 7, 4, 3, 7, 2, 0, 4, 4, 4, 0, 8, 1, 1, 5, 3, 3, 3, 5, 3, 2, 8, 5, 8, 4, 1, 1, 0, 2, 7, 8, 5, 4, 5, 9, 0, 5, 4, 0, 7, 0, 8, 3, 9, 7, 5, 1, 6, 6, 4, 3, 0, 5, 3, 4, 3, 2, 3, 2, 6, 7, 6, 3, 4, 2, 7, 2, 9, 5, 1, 7, 0, 8, 8, 5, 5, 6, 4, 8, 5, 8, 9, 8, 9, 8, 4, 5, 9
OFFSET
1,2
REFERENCES
F. Engel "Entwicklung der Zahlen nach Stammbruechen" Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg. pp. 190-191, 1913.
LINKS
Stephen Crowley, Two New Zeta Constants, page 17.
F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
Eric Weisstein's World of Mathematics, Engel Expansion
Eric Weisstein's World of Mathematics, Modified Bessel Function of the First Kind
FORMULA
Equal to Sum_{n>=1} 1/n!^2 or BesselI(0,2) - 1. - Gerald McGarvey, Nov 12 2007
Equals A070910 - 1. - R. J. Mathar, Jun 13 2008
MATHEMATICA
RealDigits[BesselI[0, 2] - 1, 10, 105] // First (* Jean-François Alcover, Oct 01 2013 *)
PROG
(PARI) besseli(0, 2)-1 \\ Charles R Greathouse IV, Oct 01 2013
CROSSREFS
KEYWORD
cons,easy,nonn
AUTHOR
Stephen Casey (hexomino(AT)gmail.com), Jul 17 2007
STATUS
approved